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INTERVAL AND BAND ESTIMATION 
FOR CURVES WITH JUMPS 

IRENE GIJBELS 
PETER HALL 
ALOIS KNEIP 

Abstract 

Jump points in curves arise when the conditions under which data are generated change 
suddenly, for example because of an unplanned change in a treatment. This paper 
suggests bootstrap methods for quantifying the error in estimates of jump points, and 
for constructing confidence intervals for jump points and confidence bands for the curve. 
These problems have the unusual feature that the sampling error of the jump-point 
estimator often has a highly non-normal distribution, which depends intimately on the 
distribution of regression errors. The methods are illustrated by a simulation study as 
well as by an application to data on the annual flow volume of the Nile river. 

Keywords: Bandwidth; bootstrap; change point; confidence interval; curve estimation; 
discontinuity; kernel methods; nonparametric regression 
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1. Introduction 

In problems where a stochastic system is subject to sudden external influences, an otherwise 
continuous response to a treatment can suffer a discontinuity. In this context, we consider a 
nonparametric regression setting where data are recorded at discrete design points X1 < * . < 
Xn, rather than in the continuum. The position of a jump in a regression function, g, cannot be 
known with greater precision than the spacing between adjacent points Xi in the neighbourhood 
of the jump. Moreover, if the signal-to-noise ratio is low, then it will not be known which 
interval between successive design points contains the jump point, xo say. In the present paper 
we suggest nonstandard bootstrap methods for interval estimation of xo. We propose ways of 
combining such interval estimators with existing methods for constructing confidence bands 
for smooth functions, so as to produce a confidence band for a piecewise-continuous regression 
mean. 

Let io denote the index of the largest Xi that does not exceed the jump point. We shall 
construct an estimator io of io, and then an estimator io = (XA? + Xj+l) of xo. In order 
that our method attains a high level of statistical performance we shall base it on a two-step 
argument. In the first step we shall use a kernel-type method to identify a small interval to 
which xo belongs with high probability. Then we shall estimate io by least squares, from a 
local parametric model. Thus, the method will be 'locally maximum likelihood' in the context 
of Gaussian errors. However, it can be shown to work under much more general assumptions, 
and to produce estimators with convergence rate of order n-1. A detailed study of this point 
estimation procedure is provided by Gijbels et al. (1999). 

? Applied Probability Trust 2004 
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I. GIJBELS ETAL. 

Having estimated jump points, bootstrap methods will be applied to approximate the dis- 
tribution of io. Interval estimators of the form [il, i2], i < i2, of io will then lead to interval 
estimators [X1 , X1 2+,] of xo. It will turn out that the bootstrap procedure is consistent under 
very general assumptions on the error distribution. Indeed, in asymptotic terms it is asked of 
the design points Xi only that they become increasingly dense in a fixed interval Z as sample 
size increases. They may be either regularly spaced or randomly distributed within I. 

Importantly, the asymptotic distribution of io - io is highly non-normal, and depends 
intimately on the entire error distribution, not just a few of its moments. Indeed, the random 
variable io has a discrete distribution which might be concentrated at very few integer values. 
Since empirical approximations to distributions of estimators are essential to constructing 
accurate confidence bands, the bootstrap method that we propose must be able to produce good 
performance in highly non-normal settings. This goal is indeed achieved by our procedure, 
as is evidenced by its theoretical properties and by a simulation study. The bootstrap even 
captures some second-order features related to the length of the interval used in the second 
step. Hence, our bootstrap methods are an exception to the usual 'working rule' for the 
bootstrap for distribution estimation, which argues that it produces consistent results 'if and only 
if' the statistic under investigation is asymptotically normally distributed. See, for example, 
Mammen (1992). 

The only other work which addresses confidence procedures for change points in nonpara- 
metric regression seems to be that of Loader (1996). Loader proposes a jump-point estimator 
based on the maximal difference between left and right fits of local polynomials at each design 
point. The method requires the assumption of Gaussian errors, however, and that restriction 
limits applicability. 

There is an extensive literature on jump-point estimation. The work most closely related to 
ours is that of Muller and Song (1997). They propose a two-stage change-point estimator which 
also attains the n-1 rate of convergence for regularly spaced design. A good literature survey 
was given by Wang (1995). See also McDonald and Owen (1986), Muller (1992), Eubank 
and Speckman (1993), (1994) and Raimondo (1996). The convergence rates of the majority of 
estimators are n-1 (log n)1+8 or n-1+S, where S > 0. See also Gijbels et al. (1999) and Muller 
and Stadtmiiller (1999). 

Section 2 briefly describes the methodology used for point estimation of jump points. 
Section 3 discusses our bootstrap procedure for interval estimation. The method's numerical 
properties are presented in Section 4, which also addresses the case of more than one jump 
point and treats an application to data on the annual flow volume of the Nile river. Theoretical 
results are summarised in Section 5. 

2. Point estimation 
2.1. Model 

For the sake of simplicity we shall consider the problem of estimating a function g which 
has only one discontinuity, at xo say. The case of more than one jump is similar in most 
respects, and will be addressed in Section 4. We shall assume that a sample of n data pairs 
X = {(XI, Y1),..., (, Y Yn)} is observed, generated by the model 

Yi = g(Xi) + ?i, < i < n. (1) 

Here, the Xi are either the order statistics of a random sample from a distribution having density 
f, supported on I = [0, 1], or are given by Xi = (i + c)/n for a constant c e [0, 1]; g is 
continuous on [0, xo] and on [xo, 1], where 0 < xo < 1 and g(xo-) : g(xo+); and the errors ?i 
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are independent and identically distributed with zero mean and finite variance. The case where 
the variance of the distribution of Ei is a function of Xi, in particular where it is different on 
either side of xo, may be addressed with only minor changes to the method and results that we 
shall give. 
2.2. Point estimation of x0 

We first discuss our method in general terms, with the aim of giving the intuition behind it 
rather than a mathematically rigorous account. Suppose that we have determined a small inter- 
val, say [zo, zl1], with xo E [zo, z ]. If this interval is so small that supzo<x<xO Ig(x) - g(xo-)l 
and supxO < z I g(x) - g(xo+)l are both considerably less than the error standard deviation, 
then we might reasonably consider the following local approximation to (1): 

Y 0i + ?i if Xi [zo, x], (2) 
02 + ?i if Xi E [xo, zl], 

where 061 g(xo-) and 02 m g(xo+). We are then (approximately) in the parametric setting 
of estimating the change point of a piecewise-constant function, which has been extensively 
studied in the literature (see, for example, Korostelev and Tsybakov (1993, Chapter 1)). Under 
(2) we may estimate io = max{i : Xi < xo} by minimising the sum of squares, 

S(i, 01, 02)= (Yj - s)2 + j (Yj -02)2, (3) 
XjE[zo,Xi Xj- [Xi+il ,i 

producing a vector (io, 01, 02) of parameter estimators. Clearly, the least-squares estimator, io, 
of io is also an (approximate) maximum-likelihood estimator in the case of Gaussian errors. 
We then estimate xo by simply taking the midpoint of the estimated interval [X o, X ,,+]: 

-o = 
-(X0 + X/,). (4) 

In the context of a valid parametric model, (2) and normal errors, we may define estimators 
which are slightly more efficient (in the sense of quadratic loss) than the maximum-likelihood 
estimator io. However, in our context the important point is that (3) will still provide a reasonable 
estimator, io, if the model is only approximately true, simply because the values taken by the 
function g possess different levels before and after the jump. (See also Section 2.4.) 

How should we determine, as a first step, an appropriate interval [zo, zl]? We shall obtain 
first a preliminary estimator io of xo, and then define [zo, zl] as the interval concentrated 
around xo. The preliminary estimator x0 is constructed by using a diagnostic to identify the 
approximate location of xo. Specifically, define D by 

D(x, h) = 
a 

E=j K{(x 
- 

Xi)/h}Yi (5) 

where K is a compactly supported, differentiable kernel function and h is a bandwidth; and 
define xo to be the value of x that maximises ID(x, h)l in (vh, I - vh), where [-v, v] denotes 
the support of K. The interval [zo, zl] is then defined as [xo - th, xo + th], with t typically 
between v and 2v. 

The diagnostic, D, was studied by Gijbels et al. (1999); it was shown that, with probability 
tending to 1 as n -> oo, xo E [xo - vh, xo + vh] and, hence, xo E [-o - vh, xo + vh], provided 
that h -- 0 and nl-h -> oo (where 8 > 0). Note that maxxE[x_o-V.xo+vhl ID(x, h)l -+ oo. 
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In summary, our two-step procedure for estimating xo is as follows: 

Step 1. Locate xo, the global maximum of ID(x, h)l on (vh, 1 - vh). 

Step 2. Put [zo, zl] = [xo - th, xo + th], and determine the least-squares estimate io of io by 
minimising (3). Then use (4) to determine the final estimator Xo of xo. 

The diagnostic at (5) might be replaced by any other diagnostic which allows identification 
of small intervals which contain xo with high probability. Likewise, our basic results remain 
unchanged if a least-squares approximation by higher-order local polynomials is used instead 
of (2) and (3). 

2.3. Properties of 1o and Xo 
Under general conditions, the asymptotic distribution of the estimator io is identical in 

parametric and nonparametric cases. The distribution may be defined as follows. Put al = 

g(xo-) and a2 = g(xo+), let .... e-, E, o, 1, ... be independent and identically distributed 
as the Ei in the model at (1), and define 

0 

al + Iml-1 i ifm <-1, 
i=m+l 

4m = 0 ifm =0, 
m 

a2 +m-1 i ifm > 1, 
i=l 

and S(m) = m(al - a2){2m - (al + a2)}. Let the random integer M be chosen to maximise 
S(m). Then, 

io - io - M (6) 
in distribution as n -- oo. In the case of stochastic design (that is, where the Xi are random 
variables, rather than regularly spaced points), (6) should be interpreted conditionally on the 

design points. However, the distribution of io - io is asymptotically independent of the design. 
Since Xi+ - Xi = O(n-1), or Op(n-1) for random design, then (6) and the definition 

of Xo imply that Xo - xo = Op(n-1). In Section 3 we shall make use of the fact that, for all 

integers m and m2 with m > m2, the asymptotic distribution at (6) allows us to approximate 
the discrete probabilities 

P(xo E [X 0_ml, X _m2+l]) 
= P(io -ml < io io- m2), 

where, in the case of random design, the probabilities should be interpreted conditionally on 
the realised design points. For regularly spaced design, nothing more can be said about the 

asymptotic distribution of n(xo- - xo), since then no information is available about where xo 
might lie between design points. The same conclusion applies if design points have a stochastic 

origin but are conditioned upon at the outset (as distinct from being conditioned upon in the 
context of the probabilities above). 

However, for random design an unconditional asymptotic distribution can be identified. If 
the design density f is continuous and nonzero at xo, then for large n the spacings 

Xio+i+i - XiOi fori < -1, 

Z/ 
X 

- Xio for i 
= 0, 

Xio+l - xo for i = 1, 

XiO+i - XiO+i-1 for i > 2, 
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are approximately independent and identically distributed as exponential random variables with 
mean {nf(xo)}-l. Arguing thus, we see that 

0 
- E Zi- ZM ifM<-1, 

i=M-1 

nf(xo)(xo - xo) - T = (Zi - Zo) if M = 0, (7) 
M 

EZi+?ZM+I ifM>l, 
i=1 

where the convergence is in distribution and the Zi are independent and exponentially distributed 
with unit mean, independent also of M. We may interpret Zi as the weak limit of nf(xo)Zi as 
n -- oo. 

2.4. Choice of h and t 

The arguments above show that the behaviour of our method is asymptotically first order, 
independent of choice of the bandwidth h and of the value of t. There are, however, second-order 
effects that may play a significant role in practice. 

2.4.1. The identification problem. Even for finite samples, I D(x, h) will usually possess a large 
local maximum in [xo - vh, xo + vh] if a reasonable bandwidth is applied. However, for some 
realisations, the random error, together with a complicated structure of g, may lead to a still 
larger maximum of I D(x , h) I at a point far from xo. We may then find that xo0 [o -th, xo+th], 
which will result in the breakdown of our estimation procedure. The probability of such an 
event will not be negligible if a very small bandwidth is used or if the signal-to-noise ratio is 
very low. There is thus good reason to avoid particularly small bandwidths. This problem is not 
a specific feature of our diagnostics D, and in fact we encounter the same difficulty if we apply 
a diagnostic based on the maximal difference between left and right smooths, as proposed by 
Mtiller (1992) or Loader (1996). 

Nevertheless, the probability of correctly specifying the interval to be used in Step 2 can 
be increased by using a more sophisticated identification procedure in Step 1. In practice, 
prior knowledge of the location of a jump will often help to determine a region, S, for which 
xo E S C [0, 1]. In Step 1 one will then only look for the maximum, xo, of ID(x, h)l 
for x E S. Another possibility consists in not simply using the maximum of ID(x, h)l, but 
matching the local maxima of D(x, h)l with those of the functions ID(., hi)l obtained for a 
set {hi } of different bandwidths. A preliminary estimator, xo, might then be obtained under the 
additional constraint that, for all bandwidths hi, a large local maximum existed in the interval 
[.io - (hi + h), xo + (hi + h)]. Further details, as well as an alternative identification procedure, 
are provided by Gijbels et al. (1999). 

2.4.2. The problem of interval length. For finite samples, the local model (2) will usually present 
only an approximation, since g will show some fluctuations on [xo - th, xo + th]. The finite- 
sample distribution of io is then better approximated when replacing, in the definition of M, the 
random term ei by g(Xio-i) -al + si form < -1 andbyg(Xi+i) -a2 + Ei form > 1. A still 
more precise approximation is obtained if al and a2 are redefined to denote the average of the 
g(Xi) over all Xi E [zo, xo] and all Xi E [xo, zi] respectively. If both supzo0< <x Ig(x) - al 
and supxO<x<z1 Ig(x) - a21 are considerably smaller than lal - a2I, the distribution of io will 
still be concentrated around io. Unfortunately, this is not guaranteed if (a) the interval is very 
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large and (b) a local constant approximation is poor. It is easy to construct examples where 
least-squares estimation on a large interval [zo, z ] leads to heavily biased estimates of io. There 
is thus interest in choosing the interval as small as possible. 

Concerning the choice of h, there is thus reason to avoid very small and very large band- 
widths. A reasonable choice might be based on a cross-validation procedure, as discussed by 
Miller (1992). We might then choose a slightly undersmoothing bandwidth, possibly combined 
with a more sophisticated identification procedure as explained above. Also, the bootstrap 
method for interval estimation of io and xo, presented in Section 3, can be used to select a 
reasonable bandwidth. See Section 4. 

Choice of t constitutes a somewhat simpler problem. With high probability, xo E [xo - th, 
xo + th] for t = v. The least-squares step will, of course, not work if xo is located exactly 
at the boundary of this interval. One thus has to choose t > v. On the other hand, following 
the discussion above, using a large interval does not make sense. Hence, a reasonable value 
of t should certainly be no larger than 2v. The numerical results in Section 4 will show that 
t = 1.5v may be considered a reasonable compromise. 

3. Interval estimation 
3.1. Interval estimation for x0 

Bootstrap methods may be used to estimate the distribution of Ei and therefore that of M. In 
this way, an interval estimator of io and, hence, of xo could be constructed. Such an approach 
would capture only first-order properties of io and Xo, however. It is more appropriate to use an 
algorithm that captures second-order features to at least some extent, by mimicking the methods 
used to construct io and Xo. The following bootstrap algorithm, which has three parts, achieves 
that end. Examples of implementation will be given in Section 4. 

Part 1. (Estimation of g, and computation of residuals.) Let xo = (X^ + X0+l) denote 
the estimator introduced in Section 2.2. Using local linear regression (see e.g. Hastie and 
Loader (1993), Wand and Jones (1995, pp. 3-4, 114-115), Fan and Gijbels (1996)), construct 
an estimator, g, of g on [0, Xo], and another on [xo, 1]. Define residuals =i = Yi - g(Xi) for 
1 < i < n; calculate their mean, g; and put gi = Si - . (If desired we could also rescale these 

quantities, so that their mean-squared error coincided with the value of an estimator of the error 
variance.) 

Part 2. (Monte Carlo simulation.) Conditional on X = {(X1, Y),. .., (Xn, Yn)}, let ,.. 
E* denote a resample drawn randomly, with replacement, from the set { ...., }, and define 

Yi* = g(Xi) + ?i, 1 <i <n. 

Then X* = {(X1, Y), ., Y .(Xn, Y*)} is the bootstrap version of X. 

This approach to bootstrap resampling presupposes that the distribution of the errors, ei, is 
the same for all Xi, and in particular is the same when Xi lies on either side of the jump point. 
If empirical evidence sheds doubt on this assumption, then the resampling algorithm should be 
modified in an appropriate way. For example, if the error variance assumes different values on 
either side of xo then resampling on a given side should be only from residuals computed there, 
which should be centred (and rescaled, if desired) independently of those on the other side. If 
the variance of Ei, conditional on Xi, is a function of Xi then it may be modelled and estimated, 
by o(Xi)2, say. Then, resampling would be from the set of standardised residuals 8i/(a(Xi), 
after centring, and would take E* equal to the resampled quantity multiplied by a-(Xi). CCLL~~I ~~llL11116$ UIIU VVVUIU LUI~~~V L~i 
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Part 3. (Constructing an interval estimator of xo.) Using the method suggested in Section 2 

(employing the same values of h and t), compute the analogues io and x = - (Xi + X*+) of 

io and xo, for the resample X* rather than the sample X. For m = 0, -1, 1, -2, 2, -3, 3,..., 
determine the bootstrap probabilities 

p,i = P(- i = m | X). (8) 

Given oa (0, 1), determine integers ml and m' with ml < mn, and with minimal distance 
m2 - m, such that, for some P < a, 

2 

P, =P(m <io*-io < m IX) = l- > -a. 

Then [io - m', io - mn] is a bootstrap confidence interval for io with nominal level . < a. 
The corresponding bootstrap confidence interval for xo is given by [X-_m l, X _l+l ]. 

Note that we rely on only discrete probabilities for the different integer values of io - io. 
It will thus not always be possible to construct confidence intervals with nominal level exactly 
equal to a. 

Section 5 will give conditions under which the bootstrap distribution estimator is consistent: 
in the case of fixed design, 

sup IP(i* -i o= m X) -P(io-i0 = m) -> 0 (9) 
In =0. ?1 .... 

in probability. Under the assumption that the error distribution is continuous, (9) implies that 
for the actual level, / < a, obtained from the bootstrap procedure, 

P(x0 E [X)o_m? , X0i_m+l ]) - P(i - m < i0 < 
to - l ) 

I 

- / > 1 - a. 

That is, the bootstrap confidence intervals have asymptotically correct coverage. The same holds 
for random design. The only difference is that probabilities have to be considered conditionally 
on the realised design X1 ... . Xn, and that (9) changes to 

sup IP(i( - i( = m X) - P(io - io = nm X, ...X,*)I * 0. (10) 
71 =0,? 1 i.... 

Thus, our bootstrap algorithm is first-order correct. To appreciate that it captures some 
second-order features, observe that the procedure incorporates estimates g, g(xo-) and g(xo0+) 
of g, al = g(xo-) and a2 = g(xo+) respectively, as well as the approximations 8i to ?i for 
i = 1,..., n, which are asymptotically consistent if reasonable bandwidths (for example, of 
size n- /5) are used. Following the discussion of interval length in Section 2.4.2, it is thus 
immediately clear that second-order properties are preserved in this part of the algorithm. 

Our method does not capture all second-order features of the distribution of o - xo, however. 
This situation cannot be remedied by simply correcting for scale, as in the percentile-t method 
employed in more traditional problems. One approach to capturing second-order features would 
be to use the iterated or double bootstrap. 

If the design is stochastic, then it is possible to use the bootstrap to approximate the 
unconditional distribution of Xo - xo (see (7)). Only a slight modification of Part 2 of our 
bootstrap procedure is necessary, as follows. Draw resamples X* < ... < X* of the design 
points by relying on a nonparametric estimator f of the design density, and set Y* =g (X*) + . 
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Let A* I(X* -XI-X Let xo = - (Xi* + X l ), and use the distribution of xO - X0, given the data, to approximate i* i* + 
the unconditional distribution of Xo - xo. 

3.2. Confidence bands for functions with jumps 
A large variety of methods exists in the literature for constructing pointwise confidence 

bands (see e.g. Wahba (1983), Silverman (1985)) or simultaneous bands (e.g. Knafl et al. 
(1985), Hardle and Bowman (1988), Hall and Titterington (1988), Hardle and Marron (1991), 
Eubank and Speckman (1993), Eubank and Wang (1994)) for smooth regression means known 
only up to bounds on derivatives. Additionally, there is a large classical literature on confidence 
bands in parametric regression. In the present section we suggest a technique for combining a 
general confidence band method with our technique for constructing confidence intervals for 
jump points, so as to produce confidence bands for functions with jumps. 

For the sake of definiteness, we shall confine attention to methods for constructing simulta- 
neous bands, for which g is estimated on the interval between two jumps using only data pairs 
(Xi, Yi) whose Xi coordinate lies in that interval. The case of pointwise bands is similar; there, 
we suggest taking the pointwise coverage probability for the bands and the coverage probability 
of confidence intervals for jump points to have a common value such as 0.95. 

Suppose, as before, that the design points are distributed increasingly densely on the inter- 
val I = [0, 1], and that there are just k jump points, 0 < xl < ... < xk < 1. We suggest 
factorising the coverage probability /3 = 1 - a into 2k + 1 parts, say B3 = fl .. P 2k+1, where 
(a) 0 < pi < 1 for each i, (b) , ..., Pk will be the coverages associated with intervals 
for the respective jump points xl, ..., Xk, and (c) Pk+l, ... ., 2k+1 will be the coverages of 
confidence bands for g in the respective intervals [0, xl] [, [x2l,...[, k, 1] between jumps. 
(The methods suggested in Sections 2 and 3.1 are readily generalised to the case of k > 1 
jumps, and may be used to produce estimators Xj of, and confidence intervals of the form 

[Xlj _,m Xlj_m~ j+l] for, the xj.) 

Extending each confidence interval vertically, we obtain a sequence of confidence 'pillars', 
{(X, y) : x E [Xj_ma , Xj_ma +L - < y < oo00. Using a standard method such as one 

2 ,j2J i mij 
of those noted in the first paragraph of this section, construct a Pk+j -level confidence band for 
g on the interval ['j-1, .j] for each j E {1, ..., k + 1, where we define Xo = O and 4k+l = 1. 
Splice the confidence pillars and confidence bands together, to produce a confidence band for 
g on 2. Noting the consistency of our bootstrap estimators of the distributions of ij - ij (see 
(8) and (9)), it may be proved that our confidence band has asymptotically correct coverage. 

4. Numerical results 
4.1. Simulation study 

The following two examples illustrate our procedures for constructing confidence intervals 
and bands for curves with jumps. We take g to be one of the following two functions: 

gl(x) = 4x2 + 1(x > 0.5) 

and 
exp{-2(x - 0.35)} - 1 if x E [0, 0.35), 

g2(x) = exp{-2(x - 0.35)} if x E [0.35, 0.65), 

exp{2(x - 0.65)} + exp(-0.6) - 2 if x E [0.65, 1]. 

We treat fixed, equally spaced design as well as uniform, random design. Errors are taken to be 
Gaussian with standard deviations a = 0.1,0.3 or 0.6, and the biweight kernel K (x) = (1 -x2)2 
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TABLE 1: Bootstrap estimated probabilities for the function gl. 

Relative frequency (x 100) of values of lio - io 
Bootstrap mean (and standard deviation) 

n a h 0 < 1 <2 <3 < 10 

50 0.1 0.1 100.0 100.0 100.0 100.0 100.0 
100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 

50 0.3 0.05 83.3 93.0 94.0 94.6 97.9 
78.8 (19.4) 88.2 (15.2) 90.8 (13.4) 92.0 (12.3) 96.9 (6.7) 

50 0.3 0.1 87.5 97.2 98.1 98.6 99.7 
82.3 (15.6) 92.8 (9.3) 95.8 (6.4) 97.0 (4.8) 99.2 (1.6) 

50 0.3 0.15 84.9 96.5 98.2 99.0 99.7 
79.9 (16.6) 91.6 (10.3) 95.4 (6.9) 97.0 (5.0) 99.2 (1.5) 

50 0.3 0.2 80.3 92.6 96.2 97.5 99.2 
74.9 (18.7) 88.1 (12.8) 93.0 (9.1) 95.4 (6.8) 98.9 (2.5) 

100 0.3 0.1 87.9 98.6 99.7 99.9 100.0 
84.7 (11.6) 95.4 (5.6) 98.0 (3.4) 99.0 (2.1) 99.8 (0.5) 

100 0.6 0.1 49.2 72.5 81.5 85.7 95.5 
52.4 (18.4) 71.7 (16.7) 80.1 (14.5) 84.7 (12.7) 93.5 (8.1) 

TABLE 2: 95% confidence intervals for the function gl. 

Actual (and nominal) coverage frequencies of bandwidths 
Average length of confidence interval 

n a 0.05 0.10 0.15 

50 0.10 100.0 (100.0) 100.0 (100.0) 100.0 (99.9) 
0.020 0.020 0.020 

50 0.3 92.7 (96.1) 95.0 (96.6) 95.4 (96.6) 
0.152 0.085 0.083 

100 0.3 96.6 (96.4) 96.2 (96.7) 96.4 (96.7) 
0.043 0.029 0.032 

100 0.6 82.1 (95.1) 89.5 (95.2) 90.9 (95.4) 
0.331 0.173 0.162 

500 0.6 94.1 (95.5) 94.6 (95.6) 95.3 (95.6) 
0.023 0.021 0.023 

100* 0.3 93.7 (95.1) 94.5 (96.4) 94.0 (96.3) 
0.147 0.060 0.064 

for Ixl < 1 is used throughout. Sample sizes n = 50, 100 and 500 are considered, and the 
numerical work employs 1000 simulations for each set of parameter values, as well as B = 2000 
bootstrap replicates. 

The function gl has a single jump discontinuity of size 1 at 0.5. The procedure described 
above, with t = 1.5, was used to estimate the location of the jump and to construct bootstrap 
confidence intervals. Simulations with t E [1.5, 2] did not lead to any important differences, 
the choice t = 1.5 being slightly better. Based on the 1000 simulations, Table 1 shows the 
resulting relative frequencies of some values of li - iol in different situations, together with 
means and standard deviations of the corresponding bootstrap probability estimates. Results 
on the construction of 95% confidence intervals are reported in Table 2. It provides actual and 
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TABLE 3: 95% confidence intervals for the function g2. 

0.35 0.65 

n a 0.05 0.10 0.15 0.05 0.10 0.15 

50 0.1 100.0 (100.0) 100.0 (99.9) 100.0 (99.9) 100.0 (100.0) 100.0 (100.0) 99.8 (99.6) 
0.020 0.020 0.021 0.020 0.020 0.021 

50 0.3 91.6 (95.8) 94.7 (96.3) 94.8 (96.2) 93.1 (96.1) 94.5 (96.7) 94.4 (96.7) 
0.142 0.081 0.116 0.124 0.065 0.070 

100 0.3 95.4 (96.1) 96.5 (96.5) 96.1 (96.5) 97.0 (96.2) 96.6 (96.5) 96.0 (96.4) 
0.040 0.030 0.036 0.039 0.033 0.038 

100 0.6 79.8 (95.2) 88.0 (95.3) 84.0 (95.2) 81.9 (95.2) 88.1 (95.4) 87.5 (95.4) 
0.225 0.209 0.297 0.205 0.131 0.128 

500 0.6 94.4 (95.3) 94.3 (95.4) 94.2 (95.3) 94.7 (95.4) 94.8 (95.4) 94.6 (95.3) 
0.028 0.020 0.031 0.023 0.020 0.025 

100* 0.3 94.0 (95.9) 95.4 (96.5) 96.1 (96.3) 94.2 (96.1) 96.2 (96.4) 95.3 (96.4) 
0.062 0.035 0.052 0.044 0.033 0.038 

nominal coverages, as well as the average lengths of the 1000 confidence intervals. (Recall that, 
due to the discrete nature of our procedure, it is usually not possible to obtain nominal coverages 
of exactly 95%.) All results in these two tables refer to regularly spaced design, except for the 
last situation considered in Table 2, marked by '*', which relies on uniform random design. 

Given the small sample sizes treated, the results are quite satisfactory. Coverage frequencies 
are poor only in certain situations, for the very small bandwidth h = 0.05 or for (n, o) = 

(100, 0.6). The latter represents an example with a very low signal-to-noise ratio. Table 1 
demonstrates the existence of an identification problem in these situations, as discussed in 
Section 2.4.1. There is a non-negligible probability that lio - iol > 10, which for the 
sample sizes essentially corresponds to selecting an invalid interval for least-squares estimation. 

Interestingly, the bootstrap probabilities given in Table 1 reflect this fact quite well, whereas 
actual and nominal coverages in Table 2 differ by a corresponding amount. One reason seems 
to be the following. Even if xo ? [xo - th, xo + th], the estimated curve g may show a large 
increase (or decrease) near xo, and many bootstrap replicates will provide estimates x^ and io 
close to xo and io respectively. But then the sign of i - io will be the opposite of that of io - io. 
This is confirmed by the fact that, when focusing on symmetric confidence intervals (such as 
when we take ml = -m' in Part 3 of the bootstrap procedure), actual coverage increases to 
98.7% and nominal coverage to 95.7% in the case (h, n, a) = (0.1, 100, 0.6). 

The function g2 has two jump discontinuities, both of size 1 and occurring at 0.35 and 0.65. 
The existence of two jumps requires a slight modification of the identification procedure in 
Step 1 of our estimation method. The simplest way would be to take the two largest maxima of 
ID(x, h)l. Though this method will work asymptotically, it would multiply the identification 
problem discussed above. A more sophisticated identification procedure, as indicated in Sec- 
tion 2.4.1, might be used instead. However, for simplicity we include the prior knowledge that 
the first and second jump occur before and after x = 0.5, and to rely on the respective maxima of 
ID(x, h) I in [0, 0.5] and [0.5, 1]. Results are given in Table 3, where the first and second blocks 
of the table (headed '0.35' and '0.65' respectively) refer to the first and second jumps of g2. 

Figures 1 and 2 depict a simulated dataset, together with the 95% confidence band for the 
functions gl and g2 respectively. For the sake of simplicity, pointwise confidence intervals 
for the smooth part of the curve were constructed using the percentile bootstrap method, as 
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FIGURE 1: Simulated dataset for the function gl (n = 50, h = 0.1, a = 0.3), together with the true 
regression curve (dashed line) and a 95% confidence band (solid lines). For the smooth part of the curve, 

pointwise confidence intervals were constructed using the percentile bootstrap method. 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 2: Simulated dataset for the function g2 (n = 500, h = 0.1, a = 0.6), together with the true 
regression curve (dashed line) and a 95% confidence band (solid lines). For the smooth part of the curve, 

pointwise confidence intervals were constructed using the percentile bootstrap method. 

follows. For each fixed x g*(x) was constructed using the bootstrap sample X* and local linear 
smoothing. (To avoid bias problems we undersmooth, i.e. use a bandwidth slightly smaller than 
the optimal one obtained by cross-validating the local linear fits of g between estimated jump- 
points.) Denote by l (x) . .., B (x) the estimates resulting from the B bootstrap resamples, 
and let cl,w(x) and Cup(x) denote, respectively, the lower 2.5% and upper 97.5% quantiles of 
the empirical distribution determined by ̂ g(x) ...., g (x). Then 2g(x) - Cup(x) and 2g(x) - 
clow(x) can be taken as the quantiles defining a 95% confidence interval for g(x). 

The confidence pillars at jump points can be constructed as explained in Section 3.2. Join 
the confidence pillar at a jump point to an adjacent confidence band by linearly extending the 
band along its tangent until it passes through the pillar. 

75 



I. GIJBELS ETAL. 

1 Ai)( - . 

1200 - 

; .. 
) 1000 

h 800 - 

600 - 

1870 1880 1890 1900 1910 1920 1930 

Year 

FIGURE 3: Annual flow volume of the Nile river from 1871 to 1934. Shown are the data, together with a 
nonparametric estimate of the regression function (dashed line) and a 95% confidence band (solid lines). 
For the smooth part of the curve, pointwise confidence intervals were constructed using the percentile 

bootstrap method. 

4.2. An application 
A further illustration of the methods is given by an application to the well-known data on 

the annual flow volume of the Nile river from 1871 to 1934. In the statistical literature, these 
data were first presented and discussed by Cobb (1978). 

Visual inspection of the data, as well as the results of Cobb (1978) or Miller (1992), suggest a 

change point around the year 1898. Figure 3 shows the data, as well as the resulting confidence 
bands obtained with our bootstrap procedure. Confidence bands are determined in the same 

way as for Figures 1 and 2. As in Muller (1992), a bandwidth of 10 years was chosen in our 
method for constructing a confidence interval for xo. It should be noted that bandwidth was 
not crucial in this application, and a number of alternative bandwidths led to the same interval. 

Despite the rather high variability of the data, no evidence of a significant identification problem 
was found. 

The bootstrap confidence interval for the change-point is [1896, 1899]. This corresponds 
to the early years of the construction of the famous barrage at the Aswan dam. The length of 
this interval is not unreasonable. Given the high variability of the data, we cannot exclude the 

possibility that the observations in 1897 are particularly large and those in 1898 particularly 
small, which might lead to an erroneous location of the jump. 

5. Summary of theoretical properties 

In the model (1) we can impose the following conditions. 

Condition 1. (i) For all x E Z = [0, 1], g(x) = gl (x) + g2(x) 1(x > xo), where 0 < xo < 1, 
the functions g and g2 both have d > 1 bounded derivatives on 1, and g(xo) : O. 

(ii) The design points Xi are either regularly spaced on 1, in which case they equal (i + c)/n 
for a constant c E [- 1, O], or are the order statistics of a sample of independent and identically 

76 



Interval and band estimation for curves with jumps 

distributed random variables with density f, which function has a bounded derivative and is 
bounded away from 0 on I, and vanishes outside that interval. 

(iii) The errors Ei are independent of the Xi and are identically distributed with zero mean and 
E(/ IY) < oo for some y > 2. 

We can also impose the following conditions on the kernel K and bandwidth h used to 
construct the diagnostic D defined at (5). 

Condition 2. The kernel K is supported on a finite interval [-v, v]for some v > O, K(O) > 
K(x) > Ofor all x A O, and K has two bounded derivatives. 

Condition 3. As n > oo, h = h(n) -> 0 and liminfnTh > Ofor some r with 0 < r < 
- l/y. 

In the algorithm for estimating xo of Section 2.2, we can make the following assumption. 

Condition 4. In Step 2 of the algorithm, where the estimator xo is derivedfrom xo, we assume 
that t > 0. 

Note that the assumption of bounded derivatives in Condition l(i) does not imply that the 
values of those bounds need be known in order to apply our methods. 

First we describe properties of the point estimators io and xo. 

Theorem 1. Assume that Conditions 1-4 hold. Then (6) holds and, if the design is stochastic, 
then (7) is also true. 

As a prelude to describing performance of our bootstrap algorithm we impose the following 
conditions. 

Condition 5. Let K1 be a nonnegative, symmetric and Holder-continuous function supported 
on [-v, v] and integrating to 1, and let hi be a bandwidth satisfying hl(n) -> 0 and 
liminf n h l(n) > O for some rl with 0 < lT < 1 - I/y, where y is as in Condition (iii). 
Assume that the local linear estimator, g, is constructed using kernel K1 and bandwidth hi. 

Condition 6. Suppose that Conditions 1-4 hold and that the distribution of the errors ei is 
absolutely continuous. 

Theorem 2. Under Conditions 5 and 6, (9) holds for fixed design, whereas (10) is true for 
random design. 

To first order, which is the level explored in these results, the degree, X, of polynomials fitted 
locally on either side of the jump point is largely irrelevant. To appreciate why, note that, if 
g has at least t + 1 bounded derivatives (outside a neighbourhood of xo), and if the intervals 
where the Eth degree polynomials are fitted are of width O(h), then the contribution made to the 
fitted polynomials by terms of degree j is of order O(hJ). Therefore, only the local constant 
has a first-order effect, leading to the conclusion that fitting polynomials of degrees f > 0 does 
not alter the limit distribution of io. 

Appendix A. Outlines of technical arguments 
A.1. Proof of Theorem 1 

Let S(i, 01, 02) be defined by (3) with [zo, zl] = [xo - th, xo + th]. For given i, write 
S(i) for the minimum of S(i, 01, 02) with respect to the parameters 01 and 02. It follows from 
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results of Gijbels et al. (1999) that P(Xo- - xol > r7h) -- 0 for each ir > 0. Moreover, 

SUP1<-io<nh Yi - a2- Eil -- 0 and supl<iO-i<nh IYi - al - si 0. When analysing the 
structure of S(i) it can then be shown that, for all 8 with 0 < S < 1 and each ij > 0, 

P sup Ii - io-1 IS(i) - S(io) + (i - io)(al - a2){2 (i) - (a + a2)}H > ' - 0, 
- 1<Ji-iol<(nh)8 

where 

E (a2 +j) ifi >i0, 
io+l<j<i 

i - io\V(i)= - 

E (al +j) if < io. 
i<j<io-1 

More simply, P[infli-iol>(nh)8{S(i) - S(i)} < 7r] 
-- 0. The result (6) follows from these 

properties. Since, for stochastic design, (6) is valid conditional on the design points, (7) 
follows from (6) and properties of spacings of order statistics. 

A.2. Proof of Theorem 2 

Conditions 5 and 6 imply that, for each r > 0, 

lim lim sup P sup \g(Xi)- g(Xi)\ > r > 0, (11) 
o---o: n-- oo l<i<n:li-iol>X 

P{ sup Ig(Xi) -g(Xi)I < 1g2(xo) 
- 

gl(xo)l + 7} 1. (12) 
l<i<n 

Moreover, Ig(xo-) - g(xo-)l - 0 and Ig(xo+) - g(xo+)l -- 0 in probability. We may 
conclude that (11) and (12) still hold when g(Xi) and g(Xi) there are replaced by 8i and si, or 

by Ei and si, respectively. Following the argument leading to Theorem 1, we can then show that 
supm \P(iP -io = m I X)-P(M* = m X)| -> O, where M* denotes the conditional version 
of M that arises if, in the definition of M, the random variables ?i are replaced by resamples 
obtained from the collection {?i - n-1 E n ?j, 1 < i < n} of realised errors. The assumed 

continuity of the distribution of ?i implies that M* -> M in distribution. Theorem 2 follows. 
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